A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination.

نویسندگان

  • Timothy F Plageman
  • Bharesh K Chauhan
  • Christine Yang
  • Fanny Jaudon
  • Xun Shang
  • Yi Zheng
  • Ming Lou
  • Anne Debant
  • Jeffrey D Hildebrand
  • Richard A Lang
چکیده

Epithelial invagination is a common feature of embryogenesis. An example of invagination morphogenesis occurs during development of the early eye when the lens placode forms the lens pit. This morphogenesis is accompanied by a columnar-to-conical cell shape change (apical constriction or AC) and is known to be dependent on the cytoskeletal protein Shroom3. Because Shroom3-induced AC can be Rock1/2 dependent, we hypothesized that during lens invagination, RhoA, Rock and a RhoA guanine nucleotide exchange factor (RhoA-GEF) would also be required. In this study, we show that Rock activity is required for lens pit invagination and that RhoA activity is required for Shroom3-induced AC. We demonstrate that RhoA, when activated and targeted apically, is sufficient to induce AC and that RhoA plays a key role in Shroom3 apical localization. Furthermore, we identify Trio as a RhoA-GEF required for Shroom3-dependent AC in MDCK cells and in the lens pit. Collectively, these data indicate that a Trio-RhoA-Shroom3 pathway is required for AC during lens pit invagination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination.

Embryonic development requires a complex series of relative cellular movements and shape changes that are generally referred to as morphogenesis. Although some of the mechanisms underlying morphogenesis have been identified, the process is still poorly understood. Here, we address mechanisms of epithelial morphogenesis using the vertebrate lens as a model system. We show that the apical constri...

متن کامل

Bio015263 1..10

Epithelial invagination is a morphological process in which flat cell sheets transform into three-dimensional structures through bending of the tissue. It is accompanied by apical constriction, in which the apical cell surface is reduced in relation to the basal cell surface. Although much is known about the intra-cellular molecular machinery driving apical constriction and epithelial invaginat...

متن کامل

Bio015263 1782..1791

Epithelial invagination is a morphological process in which flat cell sheets transform into three-dimensional structures through bending of the tissue. It is accompanied by apical constriction, in which the apical cell surface is reduced in relation to the basal cell surface. Although much is known about the intra-cellular molecular machinery driving apical constriction and epithelial invaginat...

متن کامل

Apical constriction and epithelial invagination are regulated by BMP activity

Epithelial invagination is a morphological process in which flat cell sheets transform into three-dimensional structures through bending of the tissue. It is accompanied by apical constriction, in which the apical cell surface is reduced in relation to the basal cell surface. Although much is known about the intra-cellular molecular machinery driving apical constriction and epithelial invaginat...

متن کامل

Dev107433 1..11

Apical constriction (AC) is a widely utilized mechanism of cell shape change whereby epithelial cells transform from a cylindrical to conical shape,which can facilitatemorphogeneticmovements during embryonic development. Invertebrate epithelial cells undergoing AC depend on the contraction of apical cortex-spanning actomyosin filaments that generate force on the apical junctions and pull them t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 23  شماره 

صفحات  -

تاریخ انتشار 2011